A maioria dos sistemas de inteligência artificial atuais são classificadores, ou seja, podem ser treinados para distinguir diferentes imagens, por exemplo, cães e gatos. Os sistemas de IA generativa podem ser treinados para gerar uma imagem de um cão ou de um gato que não existe no mundo real. A capacidade criativa da tecnologia está mudando as regras do jogo.
A IA generativa permite que os sistemas criem artefatos de alto valor, por exemplo, vídeos, histórias, dados de treinamento e até mesmo designs e esquemas.
A transformação generativa pré-treinada, ou Generative Pre-trained Transformer (GPT), por exemplo, é a tecnologia de processamento de linguagem natural em larga escala que usa aprendizagem profunda para produzir textos aparentemente escritos por humanos.
A terceira geração (GPT-3), que prevê a próxima palavra mais provável em uma frase, com base em seu treinamento acumulado, pode redigir histórias, canções, poesia e até mesmo código de computador, e possibilita que o ChatGPT faça a tarefa escolar do seu filho adolescente em segundos. Além do texto, geradores de imagem digital, como DALL·E 2, Stable Diffusion e Midjourney, podem criar imagens a partir de texto.
Existem várias técnicas de inteligência artificial usadas em IA generativa. Contudo, mais recentemente, o foco tem sido em modelos fundamentais.
Os modelos fundamentais são pré-treinados a partir de fontes de dados gerais de forma autossupervisionada, permitindo que sejam adaptados posteriormente para solucionar novos problemas. Esses modelos são baseados, principalmente, em arquiteturas de transformação, que representam um tipo de arquitetura de rede neural profunda que processa uma representação numérica de dados de treinamento.
As arquiteturas de transformação aprendem o contexto e, assim, o significado, rastreando relacionamentos em dados sequenciais. Os modelos de transformação aplicam um conjunto de técnicas matemáticas evolucionárias, chamadas de atenção ou auto-atenção, para detectar influências e interdependências sutis até mesmo entre os elementos de dados mais amplamente separados em uma série.
Não esqueça os riscos da IA generativa
Lembre-se que a IA generativa apresenta apenas oportunidades para os negócios, mas as ameaças também são reais, incluindo o potencial para “deepfakes”, questões de direitos autorais e outros usos maliciosos da tecnologia de IA generativa direcionados contra a sua organização.
Trabalhe com os principais líderes de segurança e gestão de risco para minimizar proativamente riscos de reputação, fraude e políticos, apresentados por usos maliciosos de IA generativa para indivíduos, organizações e governos.
Trabalhe com os principais gerentes de segurança e risco para reduzir proativamente os riscos de reputação, falsificação, fraude e políticos apresentados por usos maliciosos de IA generativa para indivíduos, organizações e governos.
Considere também a implementação de um guia sobre o uso responsável de IA generativa por meio de uma lista selecionada de provedores e serviços aprovados, priorizando aqueles que se esforçam para fornecer transparência nos conjuntos de dados de treinamento, utilização do modelo adequado e/ou oferecem seus modelos em código aberto.
Brian Burke é Vice-Presidente de Pesquisa para Inovação Tecnológica, com 25 anos de experiência em arquitetura empresarial e inovação tecnológica. Sua pesquisa concentra-se, principalmente, em detectar tendências de tecnologia estratégicas e emergentes. Ele se destacou como autor da pesquisa Principais tendências estratégicas de tecnologia e do Hype Cycle para tecnologias emergentes. Burke também é autor do livro “Gamify: How Gamification Motivates People to Do Extraordinary Things”.